

Pdiver In Action: Clear

Privacy in Logs

1. Privacy in Logs is a Risk
Logging is indispensable for system operations, providing essential insights for monitoring,

troubleshooting, and auditing. However, if not properly managed, logs can become a significant

security risk, exposing sensitive data and potentially leading to costly data breaches or regulatory

violations.

Securing logs is not just a coding task, it requires well-defined data governance and process management.
Effective desensitization solutions better have:

• Flexible: Accommodate both runtime and off-time needs due to the usage requirements from

all directions and privacy protection.
• Non-Intrusive: Integrate into existing environments with minimal disruption.
• Configurable: Address various needs with customizable settings.

Sensitive and Privacy Data in Logs

Even if sensitive data was encrypted in your databases, logs can inadvertently store sensitive (not

surprisingly plain database password, API's access token and so on) and privacy like Personally

Identifiable Information (PII) and Protected Health Information (PHI).

Logs are Frequently Targeted

Logs are an attractive target for attackers because they can contain rich details about the system,

user behavior, and sensitive information. Attackers who gain access to logs can mine them for PII

or PHI, which can lead to data breaches or identity theft. Logs are also often stored in locations

that may not have the same security protections as databases, making them easier to access.

Regulatory Non-Compliance

In industries like healthcare, regulations such as HIPAA impose strict rules on how PHI and PII

should be handled. It is required to not only protect sensitive data in databases but also ensure it

is not exposed in other parts of the system, including logs. Failure to comply can result in fines,

legal consequences, and damage to your reputation.

Debugging May Introduce Risk

A common reason sensitive data appears in logs is during debugging. Developers may

unintentionally store full user records or transaction details to troubleshoot issues. Without proper

governance, these debug logs can accumulate large amounts of PII or PHI, making them highly

vulnerable to potential attacks.

Decentralized Logging Increases Exposure

While centralized logging systems like Elasticsearch or cloud-based services such as AWS

CloudWatch provide powerful insights into application behavior, they also introduce a single point

of failure. If sensitive data is not properly desensitized before being sent to these services, a breach

could result in the exposure of a significant amount of sensitive information all in one location.

2. Why Pdiver is Essential for Logs: Balance

of Security and Functionality

Striking the right balance between security and functionality is a critical challenge when managing logs.

• Limiting logging or overly restricting what’s captured can reduce operational visibility,

making it harder to trace errors, identify performance issues, or perform comprehensive

audits.
• Conversely, failing to protect sensitive data—such as PII or PHI—can lead to severe

consequences, including regulatory violations under laws like HIPAA and GDPR.

Pdiver, created by HiFiData, represents a transformer network aimed at protecting privacy-sensitive

data while ensuring its usability in business activities refer to High Fidelity Data: Ensuring Privacy

and Usage

Pdiver automatically or configurably transforms privacy-sensitive data while preserving the overall

structure and visual representation of logs. This ensures that the logs remain fully functional for

debugging, analysis, and monitoring, while preventing the exposure of sensitive information.

By addressing privacy concerns in logs, Pdiver helps organizations avoid costly mistakes associated

with mishandling sensitive data. Logs retain complete visibility for system operations, while

sensitive information is desensitized or masked before it becomes a security risk. Key benefits

include:

• Maintain Compliance: Ensure logs comply with privacy regulations such as HIPAA.
• Reduce Risks: Minimize the exposure of sensitive data, significantly lowering the risk of data

breaches.
• Streamline Processes: Automate data desensitization without disrupting logging workflows,

saving time and effort.

https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.hifi-data.com/
https://dzone.com/articles/high-fidelity-data-ensuring-privacy-and-usage
https://dzone.com/articles/high-fidelity-data-ensuring-privacy-and-usage

• Preserve Functionality: Retain the utility of logs for monitoring, debugging, and auditing while

safeguarding sensitive information.

Pdiver offers flexibility in how sensitive data is managed within logs:

• Real-Time Transformation: Pdiver can be embedded directly into the logging framework (e.g.,

SLF4J) to automatically desensitize data as it is generated. This ensures immediate

protection of sensitive information without impacting system performance.
• Scheduled Transformation: Alternatively, Pdiver can be configured to run at scheduled

intervals, scanning and transforming existing logs. This method allows privacy

transformations to be applied post-creation, safeguarding sensitive data without altering the

core logging process.

Both approaches enable the continuous logging of critical information while ensuring privacy

compliance, making Pdiver a versatile solution for a wide range of environments.

3. Integration Patterns of Pdiver in Log

Protection
To address diverse logging needs, HiFiData Pdiver offers three popular integration patterns. Each

pattern provides a tailored approach to balancing data security, performance, and operational

requirements. The choice of pattern depends on the specific logging infrastructure, data sensitivity,

and cost-benefit analysis.

Pattern 1: Runtime Active Pdiving

Goal: Pdiver intercepts log entries generated by applications and transforms sensitive data

elements in real-time, ensuring no sensitive information is transmitted or stored in log files,

databases, or cloud storage (e.g., AWS S3).

This pattern is ideal for real-time log processing, preventing privacy breaches from the outset. It is

especially suited for industries with strict privacy regulations, such as healthcare and finance, where

immediate log protection is crucial.

Pattern 2: Runtime Passive Pdiving

Goal: Pdiver processes multiple log entries in batches, transforming sensitive data elements before

the logs are transmitted or persisted in other systems.

This pattern works best in complex environments where modifying logging appenders is challenging

or undesirable. It minimizes privacy risks in large-scale logging systems without disrupting the main

logging workflow. Additionally, it’s well-suited for systems that generate high volumes of logs and

can accommodate a delay in data desensitization.

https://www.hifi-data.com/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/

Pattern 3: Static Pdiving

Goal: Pdiver transforms sensitive data in all log files that are already stored in various locations.

This pattern is ideal for long-term retention and historical log analysis. Organizations that rely on

centralized logging systems for audit trails, forensic investigations, or legal compliance benefit

greatly from this approach. It ensures that archived logs remain secure and compliant with privacy

regulations, making it particularly useful for industries like finance or healthcare, where logs must

be retained for years while maintaining privacy.

4. Use Case 1: Transforming Local Log Files

Integration pattern for log files

Pattern 1: Runtime Active Pdiving

Pdiver is embedded directly into the logging framework (e.g., Java’s SLF4J) within the application

code. As log entries are generated, Pdiver transforms any sensitive data in real-time before the log

entries are written to files. The modified log entry, now free from sensitive information, is safely

stored in the log file. This ensures immediate protection and compliance with privacy regulations.

Pattern 2: Runtime Passive Pdiving

Pdiver is deployed as a separate microservice or module from the core application. Logs are initially

written by the application with all data intact. A scheduled job then triggers Pdiver scans logs and

desensitizes sensitive data in logs. This approach provides flexibility to manage sensitive data

without modifying the core application’s logging processes.

https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/

Pattern 3: Static Pdiving

Pdiver operates as a batch process, scanning and transforming archived log files. Pdiver cleans any

sensitive information in these stored logs before they are moved to long-term storage or used for

analysis. This pattern is ideal for ensuring that archived logs, accessed less frequently but still

containing sensitive data, are fully protected before being stored or reviewed.

5. Use Case 2: Transforming Logs in

Centralized Storage
In modern application environments, logs are often aggregated in centralized storage systems like

Elasticsearch for analysis and monitoring at scale. While these platforms offer powerful capabilities,

sending logs containing sensitive data to centralized services poses significant privacy risks if not

properly managed.

Integration pattern for Centralized logging

Pattern 1: Runtime Active Pdiving

Integrate Pdiver with the logging framework, such as SLF4J, by modifying the appender to invoke

Pdiver before logs are sent to the centralized service. As log entries are generated, Pdiver

transforms sensitive data of each entry in real-time before it reaches the centralized service. This

ensures that logs containing PII, PHI, or other sensitive information are desensitized at the source,

protecting privacy from the moment logs are created.

Pattern 2: Runtime Passive Pdiving

Deploy Pdiver as an intermediary microservice between the log source and the centralized storage.

One option is to implement an Elasticsearch plugin that preprocesses received logs. Instead of

modifying the logging appender, logs are routed to Pdiver for transformation before they are

forwarded to storage. The application generates logs as usual, sending them to the intermediary

https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/

service. Pdiver scans for sensitive data, applies transformations, and then forwards the desensitized

logs to centralized systems like Elasticsearch. This method allows flexibility without altering the

core logging processes.

Pattern 3: Static Pdiving

Pdiver operates as a batch process or scheduled task that periodically scans logs already stored in

centralized storage. This approach requires no changes to the application’s logging or transmission

process, as Pdiver directly interacts with the stored logs. Logs are sent to centralized storage in

their raw form. At predefined intervals (e.g., hourly), Pdiver scans the stored logs for sensitive

information and applies the transformations. This ensures that sensitive data is eventually

desensitized in long-term storage, providing privacy compliance for historical log data.

6. Use Case 3: Transform Logs in AWS
In cloud-native architectures that rely on AWS services for logging, monitoring, and auditing, logs

are processed in distributed and scalable environments. Services like CloudWatch, CloudTrail, and

S3 capture and store logs, but ensuring the privacy and security of sensitive data within these logs

is critical for regulation compliance.

Integration pattern for AWS Logging

Pattern 1: Runtime Active Pdiving

In this pattern, sensitive data is desensitized in real-time as logs are generated, ensuring that no

sensitive information is transmitted to AWS services like CloudWatch or S3. HiFiData Pdiver can be

embedded directly into AWS Lambda functions or CloudWatch log agents, intercepting and

transforming logs before they are forwarded to services such as CloudWatch, CloudTrail, or S3. As

log entries are created by applications, Pdiver processes each entry in real-time, ensuring that

sensitive data is immediately desensitized, preventing the exposure of private information within

AWS.

https://www.linkedin.com/pulse/pdiver-how-works-zilong-tang-210le/
https://www.hifi-data.com/

Pattern 2: Runtime Passive Pdiving

This approach offers greater flexibility by processing logs post-creation on a scheduled basis rather

than in real-time. HiFiData Pdiver can be deployed as a separate Lambda function or microservice,

periodically scanning and processing logs independently of the log generation process.

Logs are initially sent in their raw form to AWS services like CloudWatch or S3. Pdiver is triggered

either by events or on a scheduled basis to desensitize sensitive data without disrupting real-time

workflows, ensuring compliance before logs are stored long-term or analyzed.

Pattern 3: Static Pdiving

In this pattern, logs are desensitized after being archived in AWS storage services like S3. HiFiData

Pdiver operates as a scheduled batch process, scanning and transforming archived logs without

interfering with real-time logging systems. At predefined intervals (e.g., hourly), Pdiver processes

the logs stored in their original form, removing sensitive data before they are moved to long-term

storage or used for retrospective analysis. This ensures that historical logs remain secure and

regulations compliant even in long-term storage.

7. Benefit Analysis of Pdiver Integration

Patterns

Pattern 1: Runtime Active Pdiving

• Real-Time Protection: Sensitive data is transformed as logs are generated, ensuring

immediate privacy compliance from the moment logs are created.
• No Exposure of Sensitive Data: Sensitive information is never written to logs, greatly reducing

the risk of data breaches and ensuring data privacy.
• Seamless Integration: Easily integrates with existing logging frameworks, with minimal

impact on logging workflows.
• Immediate Privacy Assurance: Ideal for environments where logs are exposed to third-party

systems or accessed by end-users, ensuring privacy is enforced instantly.

Pattern 2: Runtime Passive Pdiving

• Greater Flexibility: Transforms sensitive data after logs are created, maintaining their existing

logging frameworks without modification.
• Privacy Compliance: Ensures sensitive information is removed before logs are archived or

transmitted, helping meet regulatory requirements.
• Legacy System Support: Perfect for legacy environments where updating the logging process

is difficult or undesirable.
• Lower Complexity: Minimal disruption to the core logging system, making it a simpler

solution to implement in established environments.

https://www.hifi-data.com/
https://www.hifi-data.com/
https://www.hifi-data.com/

Pattern 3: Static Pdiving

• Efficient for Historical Logs: Processes large volumes of archived or historical logs in bulk.
• Minimal Disruption: Operates independently of real-time systems, with no impact on active

workflows or system performance.
• Long-Term Storage: Particularly suited for organizations required to store logs for extended

periods for auditing, compliance, or forensic analysis.
• Cost Efficiency: Reduces the processing load on active systems by transforming log as a

scheduled task, lowering operational overhead and resource consumption.

8. Which Pdiver Pattern is Right for You?
Selecting the right Pdiver pattern depends on how logs are handled and the urgency of desensitizing

sensitive data. Here's a quick guide:

• Runtime Active Pdiving: Best for real-time protection when logs are exposed to external

systems or users, offering immediate privacy safeguards.
• Runtime Passive Pdiving: Ideal if minimizing changes to the logging system is a priority and

logs don’t require instant access, providing flexible privacy protection before long-term

storage.
• Static Pdiving: Suited for archived logs or large volumes of historical data, enabling bulk

desensitization without impacting active systems, ensuring compliance for long-term

storage.

Combining Multiple Patterns

Organizations may benefit from adopting multiple Pdiver patterns based on architecture, security

needs, and business priorities. Different teams may focus on scalability, data sensitivity,

performance, or compliance, driving the need for varied approaches.

By implementing one or more of these patterns, sensitive data can be protected while maintaining

system performance, logging functionality, and operational visibility.

	1. Privacy in Logs is a Risk
	Sensitive and Privacy Data in Logs
	Logs are Frequently Targeted
	Regulatory Non-Compliance
	Debugging May Introduce Risk
	Decentralized Logging Increases Exposure

	2. Why Pdiver is Essential for Logs: Balance of Security and Functionality
	3. Integration Patterns of Pdiver in Log Protection
	Pattern 1: Runtime Active Pdiving
	Pattern 2: Runtime Passive Pdiving
	Pattern 3: Static Pdiving

	4. Use Case 1: Transforming Local Log Files
	Pattern 1: Runtime Active Pdiving
	Pattern 2: Runtime Passive Pdiving
	Pattern 3: Static Pdiving

	5. Use Case 2: Transforming Logs in Centralized Storage
	Pattern 1: Runtime Active Pdiving
	Pattern 2: Runtime Passive Pdiving

	Pattern 3: Static Pdiving

	6. Use Case 3: Transform Logs in AWS
	Pattern 1: Runtime Active Pdiving
	Pattern 2: Runtime Passive Pdiving

	Pattern 3: Static Pdiving

	7. Benefit Analysis of Pdiver Integration Patterns
	Pattern 1: Runtime Active Pdiving
	Pattern 2: Runtime Passive Pdiving
	Pattern 3: Static Pdiving

	8. Which Pdiver Pattern is Right for You?
	Combining Multiple Patterns

